

© Copyright 2001 by the American Chemical Society

VOLUME 105, NUMBER 16, APRIL 26, 2001

LETTERS

Theoretical Investigation on Stability of the C·H₂OCl Radical

Joseph W. Bozzelli* and Dawoon Jung

Department of Chemistry, Chemical Engineering and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102 Received: September 20, 2000; In Final Form: February 28, 2001

The reaction of ClO with CH₃OO forms CH₃OCl, which is thought to be an important species in ozone destruction over the Artic and Antarctic polar regions. Principal processes for CH₃OCl loss include abstraction of an H atom by OH or Cl, where the C·H₂OCl radical is formed. This radical can dissociate to Cl + CH₂O products via β scission (elimination) of a Cl atom with formation of a strong carbonyl π bond; or if stable, $C \cdot H_2OCl$ will react with O_2 to form a peroxy radical. Structures and the thermochemical properties (enthalpy, ΔH_{1798}° , entropy S(298), and heat capacity) of the C·H₂OCl radical, a transition state for its dissociation to $CH_2O + Cl$ (TSCH₂O-Cl) and a formaldehyde-Cl atom adduct (ACH₂O-Cl), are estimated by ab initio and density functional calculations. Geometries are optimized and frequencies are estimated using MP2/6-31G(d,p), B3LYP/6-31G(d,p), or MP2/6-31G(d) level calculations. Single point calculations for estimation of energy are performed with B3LYP/6-311+G(3df,2p) and QCISDT/6-31G(d,p) and with composite methods of CBS-Q and G3/MP2. Density functional calculations do not predict the existence of a stable C·H₂OCl radical; only a lower energy, loosely bound adduct and final products $CH_2O + Cl$. HF and MP2 calculations optimize to a C·H₂OCl radical structure with an O–Cl bond (MP2) of 1.72 Å. ΔH_{f298}° values on this MP2 structure are calculated using four different working (isodesmic) reactions. Standard enthalpy based on CBS-Q/MP2/6-31G(d,p) energies with isodesmic reaction analysis on this MP2 structure results in ΔH_{1798}° of 32.39 ± 2.21 kcal/mol; this is in excellent agreement with the high level calculations of Espinosa-Garcia (32.0 ± 3.5) . MP2 calculations also predict an early transition state for C+H₂OCl dissociation with an O-Cl bond of 1.78 Å. Analysis of the MP2/6-31G transition state structure, using either CBS-Q or G3/MP2, yields an enthalpy some 4.4 kcal/mol lower than the stable radical; i.e., no barrier to C·H₂OCl dissociation is found. Products $CH_2O + Cl$ and a loosely bound adduct of $ACH_2O \sim Cl$ have much lower energies at -1.86 ± 2.21 and 0.26 ± 2.21 kcal/mol, respectively. We conclude from analysis of the enthalpy values of the three structures (adduct, TST, and products) that the HF- or MP2-optimized C·H₂OCl structure does not exist as a stable radical and that density functional calculations provide more realistic insight into the chemistry of this species. Abstraction of H atoms from CH₃OCl by active radicals such as OH, Cl, O, H, ..., etc., result in formation of CH₂O plus a Cl atom.

1. Introduction

Chlorocarbons and other halocarbon compounds are present in the atmosphere from evaporation of solvents and other anthropogenic activities.^{1,2} The reactions of these species in the atmosphere or combustion environment typically result in chlorocarbon radicals that turn into oxygenated chlorocarbons through reactions with O_2 . One of these oxy-chlorocarbons is methyl hypochlorite, which is formed in the atmosphere from reaction of methylperoxy radical with ClO; CH₃OCl is reported to be important in ozone depletion over the polar regions.^{3–9}

10.1021/jp003401+ CCC: \$20.00 © 2001 American Chemical Society Published on Web 03/31/2001

^{*} Corresponding author. E-mail: Bozzelli@njit.edu.

TABLE 1: Parameters vs Calculation Method^a

geometry	C∙H ₂ OCl ^b	TS	CH ₂ OCl ^c	ACH ₂ O~Cl ^d	$CH_2O + Cl$
MP2/6-31G(d,p)	yes		yes	yes	yes
MP2/6-31G(d)	yes		yes		
B3LYP/6-31G(d,p)	Nf ^e		Nf	yes	yes
energy	C•H ₂	2OCl ^g	TSCH ₂ O	Cl ^h ACH ₂ O~C	CH_2O $I^i + CI^j$
B3LYP/6-31G(d,p)	У	es		yes	yes
B3LYP/6-311+G(3d	f,2p) y	es		yes	yes
QCISD(T)	y	es		yes	yes
CBS-Q	У	es	yes	yes	yes
$G3/MP2^{g}$	y	es	yes		

^{*a*} Blank = not calculated. Nf = calculation attempted, indicated structure not found (see text). ^{*b*} Stable radical (C·H₂OCl) \rightarrow ^{*c*}CH₂O-Cl (TS) \rightarrow ^{*d*}ACH₂ \sim OCl (adduct) \rightarrow CH₂O + Cl. ^{*e*} Stable structure is not found. ^{*f*}TST to CH₂O + Cl not found. ^{*g*} Energy on MP2/6-31G(d,p) structure. ^{*h*} G3/MP2 is on MP2/6-31G(d) structure. ^{*i*} Energy on MP2 and density functional structure.

The methyl hypochlorite radical, C·H₂OCl, formed by abstraction of a hydrogen from the methyl group, has estimates or theoretical determinations for its enthalpy^{6,7,10} but no experimental data that we are aware of. Carl et al.⁸ suggest that the radical thermally decomposes in their analysis of experiments on Cl atom reaction with CH3OCl.8 The C+H2OCl radical is somewhat unique in that its dissociation products from β scission of the weak O-Cl bond, CH₂O + Cl atom, are 27 kcal/mol lower in energy than the reported enthalpy for the radical. Carl et al.⁸ et al. estimate ΔH_{f298}° of C·H₂OCl as 29.9 kcal/mol by bond additivity methods, while Messer and Elrod⁶ report an $\Delta H_{f_{298}}^{\circ}$ of 23.83 kcal/mol by G2 calculation analysis. Espinosa-Garcia¹⁰ recently calculated ΔH_{f298}° of C·H₂OCl as 32.0 \pm 3.5 kcal/mol using G2 analysis and Truhlar's basis set limit method. Wang et al.¹¹ report a number of isomers and reaction paths for O(³P) with CH₂Cl but do not include isomerization of the CH₂ClO- radical or C·H₂OCl. Calculations in this study support the suggestions of Carl et al.

2. Calculation Methods

All ab initio calculations are performed using the Gaussian 98 or Gaussian 94 program suites.¹² The widely used second-TABLE 2: Vibrational Frequencies (cm⁻¹), Rotational Consta order Møller–Plesset (MP2) method¹³ and hybrid density functional method of Becke, the three-parameter/Lee, Yang, and Parr (B3LYP),¹⁴ which is reported to yield accurate geometry and reasonable energies,^{15,16} are chosen for structure optimizations. B3LYP/6-311+G(3df,2p),¹⁷ QCISD(T)/6-31G(d,p),¹⁸ CBS-Q//B3LYP/6-31G (d,p), CBS-Q//MP2/6-31G(d,p), and G3(MP2) are used for energy calculations. CBS-Q is a high level composite method^{9,19} with empirical corrections; it is reported to be comparable with QCISD(T)/6-311++G(3df,2p).^{20,21} These calculations are referred to as CBS-Q//B3** and CBS-Q//MP2** in the present study.

Gaussian-3 (G3/MP2) theory²² is a composite ab initio method with geometry optimization at the MP2/6-31g(d) level. It also includes two higher level single-point energy calculations; a QCISD(T)/6-31G(d) calculation for energy and an MP2(fc)/G3-(MP2) large calculation to determine the energy difference between MP2/6-31g(d) and the MP2/high-level basis sets. The difference is applied to correct the QCISD(T)/6-31G(d) energy. G3(MP2) also includes a four-parameter high-level correction and a core-correlation term. The G3MP2 large basis set differs from the 6-311+G(3df,2p) basis set used in G2(MP2) theory by using 2df polarization functions on the atoms (Li-Ne), 3d2f polarization functions on (Na-Ar), and a special 6-311G basis set for S, Cl, and Ar optimized for the neutral atoms, plus diffuse functions on hydrogens. We have performed the optimization and the frequency and ZPVE calculations all at the MP2/6-31G(d,p) level. Harmonic vibrational frequencies are calculated for C·H₂OCl at the MP2/6-31G(d,p) level theory on the basis of optimized geometry at the same level of theory. B3 calculations were further run with OPT=NOEIGEN in case an inversion frequency or transition state (TS) was present.

3. Results and Discussion

3.1. Geometries and Vibrational Frequencies. Structures and energies determined at the different calculation levels are summarized in Table 1. The MP2/6-31G(d,p) optimized C·H₂OCl structure has an O–Cl bond of 1.72 Å and a C–O bond of 1.37 Å. Frequencies are listed in Table 2; they are in good agreement with data from other reported calculations.^{6,10} HF/6-31g(d,p) calculations determine a radical structure with a

TABLE 2: Vibrational Frequencies (cm⁻¹), Rotational Constants (GHz), Geometries (Å or deg), and Spin Ontaminations for CH₂OCl

						TSCH ₂ OCl ^d			ACH2O~Clc	
	CH_2OCl^a	CH_2OCl^a	CH_2OCl^a	CH ₂ OCl ^a		B3LYP/	$TSCH_2O-Cl^b$	$TSCH_2O-Cl^b$	B3LYP/	$ACH_2O \sim Cl^c$
param	HF/6-31G(d,p)	MP2/6-31G(d,p)	MP2/6-31G(d)	ref 10	ref 6	6-31G(d,p)	MP2/6-31G(d,p)	MP2/6-31G(d)	6-31G(d,p)	MP2/6-31G(d,p)
	Frequencies									
	230.815	289.654		287.000		-455.729^{e}	-1158.929^{f}		166.903	87.076
	423.230	397.454		398.000		392.641	281.124		246.591	135.469
	779.527	691.963		691.000		652.035	394.112		280.622	152.407
	842.561	789.328		784.000		672.258	801.126		1197.160	1271.775
	1241.945	1158.861		1162.000		1135.026	1138.825		1241.034	1302.291
	1282.762	1207.152		1209.000		1197.595	1224.224		1507.110	1603.975
	1577.554	1505.838		1509.000		1438.049	1565.631		1796.616	2668.060
	3291.080	3227.285		3231.000		3138.040	3198.514		2968.496	3117.375
	3431.395	3384.277		3388.000		3281.272	3342.681		3068.678	3162.147
					Rotatio	onal				
А	56.008	52.165				53.680	54.302		50.386	49.698
В	6.667	6.498				6.370	6.178		4.041	3.397
С	6.004	5.819				5.710	5.702		3.741	3.179
					Geom	etry				
R(O-Cl)	1.668	1.724	1.722	1.721	1.722	1.733	1.781	1.780	2.479	2.737
R(C-H)	1.074	1.079	1.082	1.078	1.082	1.086	1.083	1.086	1.105	1.100
R(C-O)	1.368	1.378	1.378	1.377	1.378	1.375	1.301	1.301	1.213	1.213
∠COCI	113.451	111.300	111.381	111.350	111.400	113.368	115.131	115.164	108.002	108.658
∠HCOCl	174.621	-183.956	175.582			-195.357	53.474	53.592	179.833	179.965
$\langle S2 \rangle$	0.76	0.76	0.76	0.76		0.75	0.93	0.93	0.75	0.76

^{*a,b,c*} Free radical, TS or adduct in the reaction path: ^{*a*} CH₂OCl (radical) \rightarrow ^{*b*} CH₂O-Cl (TS) \rightarrow ^{*c*} ACH₂ \sim OCl (adduct) \rightarrow CH₂O + Cl. ^{*d*} CH₂OCl optimized in TS by B3LYP/6-31G(d,p). ^{*e*} Imaginary frequency to CH₃ \rightarrow OCl rotational torsion. ^{*f*} Imaginary frequency to O-Cl stretching.

TABLE 3: Enthalpy Data Used in Isodesmic Reactions to Determine ΔH°_{1298} of CH₂OCl

compound	$\Delta H^{\circ}_{\mathrm{f298}}{}^a$	source	uncertainty	source
CH ₄	-17.89	ref 25	± 0.1	ref 33 (38)
CH ₃ •	34.82	ref 25	± 0.2	ref 25 (31)
CH ₃ Cl	-19.60	ref 26	± 0.2	ref 34 (39)
CH_2Cl^{a}	28.12	this study	± 0.8	this study (31)
CH ₃ CH ₃	-20.24	ref 35	± 0.1	ref 35 (39)
CH ₃ CH ₂	29.30	ref 31	± 0.5	ref 31
CH ₃ OH	-48.08	ref 35	± 0.1	ref 35 (41)
$C \cdot H_2OH^a$	-3.55	this study	± 0.7	this study
CH ₃ OCl	-15.41	ref 9	± 1.5	ref 9

^a See Supplement 3 (Supporting Information).

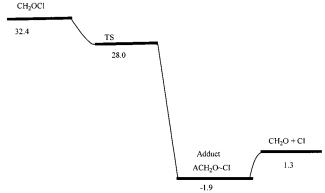


Figure 1. Potential energy for the life of C+H₂OCl (C+H₂OCl, CBS- $Q/MP2^{**}$; TS, the average of CBS- $Q/MP2^{**}$ and G3/MP2; adduct, CBS- $Q/B3^{**}$).

1.63 Å O–Cl bond. The optimized geometries for transition state (TSCH₂O-Cl) and adduct (ACH₂O~Cl) are also listed in Table 2; with MP2-predicted O–Cl bond lengths of 1.78 and

TABLE 4: Enthalpies of Formation at 298 K (in kcal/mol)

2.73 Å, respectively. Density functional methods only identified the existence of an adduct with an O–Cl bond length of 2.48 Å; they do not predict C·H₂OCl to exist. The B3LYP/6-31G-(d,p) calculations also find a transition state with an imaginary frequency corresponding to internal rotation of the CH₂ group about the CH₂–OCl bond. This TS structure is similar to the MP2 structure for stable radical but varies in dihedral angles and reaction coordinate frequency.

3.2. Enthalpies of Formation (ΔH_{f298}°) for C·H₂OCl and ACH₂O~Cl. Enthalpies of formation (ΔH_{f298}°) for radical (C·H₂OCl) and adduct (ACH₂O~Cl) are estimated using total energies obtained by the B3LYP/6-311+G(3df,2p), QCISD(T)/6-31G(d,p), and CBS-Q calculation methods in four working reactions:

$$C \cdot H_2 OCl + CH_4 \rightarrow CH_3 \cdot + CH_3 OCl$$
 (1a)

 $ACH_2O \sim Cl + CH_4 \rightarrow CH_3 \cdot + CH_3OCl$ (1b)

$$C \cdot H_2 OCl + CH_3 Cl \rightarrow CH_2 Cl \cdot + CH_3 OCl$$
 (2a)

- $ACH_2O \sim Cl + CH_3Cl \rightarrow CH_2Cl \cdot + CH_3OCl$ (2b)
- $C \cdot H_2 OCl + CH_3 CH_3 \rightarrow C_2 H_5 \cdot + CH_3 OCl$ (3a)
- $ACH_2O \sim Cl + CH_3CH_3 \rightarrow C_2H_5 + CH_3OCl$ (3b)
- $C \cdot H_2 OCl + CH_3 OH \rightarrow C \cdot H_2 OH + CH_3 OCl$ (4a)

 $ACH_2OCl + CH_3OH \rightarrow C \cdot H_2OH + CH_3OCl$ (4b)

Total energies are corrected by zero-point vibration energies (ZPVE), which are scaled by 0.9608 as recommended by Scott²³ et al. for the MP2/6-31G(d,p) method. Thermal correction, 0–298.15 K, is calculated to estimate ΔH_{f298}° at 298.15 K.²⁴

				(a)	For C•H ₂ OCl ^a					
molecu reacn		B3LYP/6- B3LYP/6-311+ 31G(d,p)//MP2** b (3df,2p)//MP2**		C • • •	D(T)/6- p)//MP2**	CBS-Q//MP2**		max error from reacn ^c		
					C•H ₂ OCl ^f					
1		30.09		30.34	3	2.30	32.40		1.8	
2		31.13		31.48	3	2.36	32.39		2.5	
3		31.63		31.83	3	2.07	32.37		2.1	
4		32.48		31.82	3	2.40	32.39		2.3	
av		31.33		31.37	3	2.28	32.39		2.2	
total err	or ^e	3.06		2.81		2.33	2.21			
				(b) Ot	hers for C•H ₂ OCl					
m	olecule		this study		ref 10		ref 6		ref 8	
С	C•H ₂ OCl 32.39 ± 2.33			ref 10 32.0 ± 3.5		ref 6 23.83	ref 8 29.9			
				(c) For the	Adduct, ACH ₂ O~	Cl^{a}				
	B3LYP/6-	B3LYP/6-	QCISD(T)/6-							
molecule	31G(d,p)//	311+(3df,2p)//	31G(d,p)//	CBS-Q//	B3LYP/6-	B3LYP/6-311+	QCISD(T)/6-	CBS-Q//	max error	
reacn	MP2** ^b	MP2**	MP2**	MP2** h	31G(d,p)//B3**c	(3df,2p)//B3**	31G(d,p)//B3**	B3**	in the reacn ^d	
				I	$ACH_2O\sim Cl^g$					
1	-6.27	-2.49	-5.86	0.28	-8.93	-5.02	-6.95	-1.84	1.8	
2	-5.22	-1.34	-5.80	0.26	-7.88	-3.88	-6.88	-1.85	2.5	
3	-4.72	-1.00	-6.09	0.25	-7.38	-3.54	-7.18	-1.87	2.1	
4	-3.87	-1.00	-5.76	0.26	-6.53	-3.55	-6.85	-1.86	2.3	
av	-5.02	-1.46	-5.88	0.26	-7.68	-4.00	-6.97	-1.86	2.2	
total error ^e	3.07	2.81	2.33	2.21	3.07	2.81	2.33	2.21		

^{*a*} Enthalpies (ΔH_{f298}^{o}) are calculated by the isodesmic reaction schemes (1-4) in the text; units are in kcal/mol. ^{*b.c*} All calculation levels are single point calculations from optimized geometry in ^{*b*}MP2/6-31G(d,p) or ^{*c*}B3LYP/6-31G(d,p). ^{*d*} Maximum error of the reaction = the sum of the uncertainty in other 3 standard compounds except target molecule; the uncertainty comes from literature or this study in Table 2. ^{*e*} Total error = the standard deviation through ΔH_{f298}^{o} via 4 different reaction schemes + the average of maximum error. ^{*f*} See footnote *b* in Table 2. ^{*g*} See footnote *d* in Table 1. ^{*h*} All values are higher for MP2 geometry than density functional method.

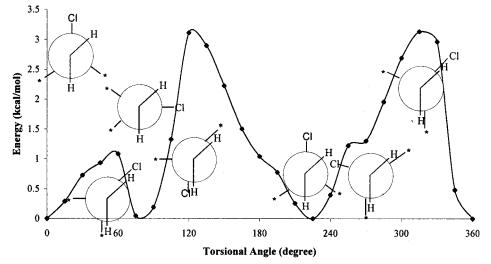


Figure 2. Potential energy for internal rotation about the C-O bond of C+H₂OCl versus torsion angle; calculated in MP2/6-31G(d,p).

		$\Delta H^{\circ}_{ m f892}$	S ^o ₂₉₈	C_{p300}	C_{p400}	C_{p500}	C_{p600}	C_{p800}	C_{p1000}	C_{p1500}
$C \cdot H_2 O C l^b$	TVR ^e		62.69	11.48	13.22	14.66	15.81	17.54	18.79	20.80
	internalf		4.16	2.22	2.04	1.85	1.68	1.45	1.32	1.15
	total	32.39	66.85	13.70	15.26	16.51	17.49	18.99	20.11	21.95
TSCH ₂ O-Cl ^c	TVR^{e}		65.33	12.32	13.79	15.05	16.09	17.69	18.90	20.86
	internalf		4.16	2.22	2.04	1.85	1.68	1.45	1.32	1.15
	total	27.97	69.49	14.54	15.83	16.90	17.77	19.14	20.22	22.01
$ACH_2O\sim Cl^d$	TVR^{e}	-1.86	65.37	11.93	13.01	14.15	15.23	17.07	18.50	20.75

^{*a*} Thermodynamic properties are referred to standard state of an ideal gas at 1atm. ^{*b*} Free radical. ^{*c*} transition state, and ^{*d*}adduct. ^{*e*} The sum of contributions from translations, external rotations, and vibrations. ^{*f*} Contributions from internal rotation about C–O bond of CH₂O–Cl.

Standard ΔH_{1298}° for the reactants and products (other than C·H₂OCl) in the isodesmic reactions are listed in Table 3 along with their literature reference.^{25–31} Their total energies, zero point vibrational energies, and thermal corrections are listed in the Supporting Information (Supplement 1). We note that the enthalpies of CH₂Cl· and C·H₂OH are from CBS-Q//B3** results described in Supplement 3 (Supporting Information) (this study). The CH₂Cl· enthalpy value of Seetula³² et al. is 28.03 \pm 0.74 kcal/mol, and we determine a value of 28.12 \pm 0.8 kcal/mol. The ΔH_{1298}° values on C·H₂OH by Holmes et al.,³³ Dobe et al.,³⁴ Ruscic et al.,³⁵ and Johnson III et al.,³⁶ are -3.51, -3.97, -3.97, and -4.25 kcal/mol. The geometries, vibrational frequencies, and spin contamination values are listed in Supplement 4 (Supporting Information).

The ΔH_{f298}° of C·H₂OCl is 32.39 kcal/mol from CBS-Q//MP2** analysis; average of four working reactions in Table 4. The CBS-Q and the QCISD(T) both show very good consistency (less than 0.1 and 0.4 kcal/mol, respectively) throughout all the isodesmic reactions. The excellent agreement with the value of Espinosa-Garcia supports our calculation methods and our value for standard enthalpy of CH₃OCl.^{9,10} The ΔH_{f298}° of adduct (ACH₂O~Cl) are 0.26 kcal/mol from CBS-Q//MP2** and -1.86 kcal/mol in CBS-Q//B3**, respectively. Figure 1 illustrates an energy diagram of the reaction system.

3.3. Enthalpies of Formation (ΔH_{1298}°) **for TSCH₂O-Cl.** Total energies at 298 K for the transition state (TSCH₂O-Cl) are estimated using single point calculations obtained by the B3LYP/6-311+G(3df,2p), QCISD(T)/6-31G(d,p) and CBS-Q// MP2/6-31G(d,p) methods on the MP2/6-31G(d,p) geometry and the G3/MP2 method with data in Supplement 2 (Supporting Information). All calculations show that the TS has lower energy than the MP2-indicated stable radical C•H₂OCl. The difference in energy at 298 K between C•H₂OCl and TSCH₂O-Cl is 4.41 kcal/mol (average of CBS-Q//MP2 and G3/MP2), resulting in a calculated ΔH_{f298}° for TSCH₂O-Cl of 27.97 kcal/mol. The transition state structure is only 0.057 Å longer in the O–Cl bond than the calculated radical structure. The moments of inertial and vibration frequencies, with the exception of the imaginary frequency, are nearly identical;, see Table 2. The difference in enthalpy between these two very similar structures should be of similar accuracy to that obtained from our working reactions, which are only isodesmic.

3.4. Entropy, Heat Capacity, and Rotational Barrier for $C \cdot H_2OCl$. Entropy (S_{298}°) and heat capacity $C_p(T)$ are estimated using the MP2 optimized $C \cdot H_2OCl$ structure. The rotational barrier for $C \cdot H_2OCl$ is calculated at the MP2/6-31G-(d.p) level with the data in listed Supplement 5 (Supporting Information) and Figure 2. The equation

$$V(\phi) = a_0 + a_1 \cos(\phi) + a_2 \cos(2\phi) + a_3 \cos(3\phi) + b_1 \sin(\phi) + b_2 \sin(2\phi) + b_3 \sin(3\phi)$$

is used to describe the potential versus torsion angle, with coefficients listed in Supplement 6 (Supporting Information). A rotational barrier of 3.1 kcal/mol is calculated for the CH_2 –OCl rotor. Entropy and heat capacity data are presented in Table 5.

Entropy and heat capacity data are also calculated for the transition state in order to estimate of the $\Delta S^{=}$ and an Arrhenius *A* factor for the radical dissociation reaction using canonical transition state theory. Assuming zero energy of activation, and that the radical is formed with the MP2 calculated structure, a rate constant (*A* factor) is estimated as $k = 3.51 \times 10^{10} T^{1.16}$, as shown in Supplement 7 (Supporting Information).

B3LYP/6-31G(d,p) calculations are applied to calculate variations in enthalpy for moving the Cl about the O in the CH₂=O--Cl to be sure we found the minimum energy; data are in Supplement 5 (Supporting Information) and Figure 3.

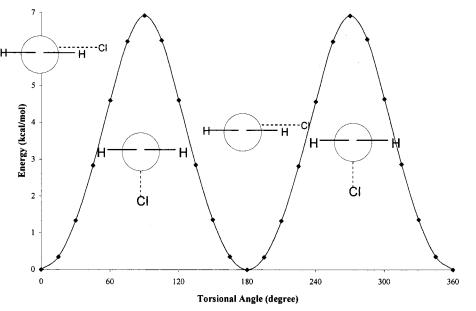


Figure 3. Potential energy for internal rotation about the C \sim O complex of adduct, ACH₂O \sim Cl versus torsion angle; calculated in B3LYP/6-31G(d,p).

The B3LYP/6-31G(d,p) determined ΔH°_{f298} for this adduct is -7.68, but the CBS-Q//B3** enthalpy value is 5.8 kcal/mol higher at -1.86 kcal/mol.

3.5. Abstraction Reaction Path on CH₃OCl. The overall exothermicity for OH, Cl and ClO + CH₃OCl reactions undergoing initial abstraction of H is

$$CH_3OCl + OH \rightarrow H_2O + CH_2O + Cl$$

 $\Delta H_{rxn \ 298} = -50.42 \text{ kcal/mol} (5)$

$$CH_3OCl + OH \rightarrow CH_3O + HOCl$$

 $\Delta H_{rxn \ 298} = -7.61 \text{ kcal/mol} (6)$

CH₃OCl + Cl → HCl + CH₂O + Cl

$$\Delta H_{rxn 298} = -34.35 \text{ kcal/mol} (7)$$

$$CH_3OCl + Cl \rightarrow CH_3O + Cl_2$$

$$\Delta H_{rxn 298} = -9.39 \text{ kcal/mol} (8)$$

$$CH_3OCl + ClO \rightarrow HOCl + CH_2O + Cl$$

 $\Delta H_{rxn \ 298} = -23.19 \text{ kcal/mol} (9)$

The overall reaction resulting from abstraction of a hydrogen (vs abstraction of a Cl) is ca. 42.6 kcal/mol more exothermic than abstraction of halogen, but we do not know if the H abstraction transition state structure sees the energy of the final product set. Reactions 5 and 8 are direct chlorine activation pathways, while reactions 6 and 7 are null cycles with respect to chlorine activation. Reaction 9 is likely not important due to kinetic constraints.

3.6. Comparison of CH₃OCl with CH₃OBr and CH₃OOH. The O–Cl, O–Br, and O–OH bond energies in CH₃O–Cl, CH₃O–Br, and CH₃O–OH are 48.50, 39.54, and 45.22 kcal/ mol, respectively.^{9,10,37} Our calculations on C•H₂OBr and C•H₂OOH radicals indicate they will thermally dissociate similarly to C•H₂OCl.

4. Conclusion

Calculations suggest that Cl atom and formaldehyde are generated directly from reactions of active radicals such as CH₃,

OH, Cl, O, and H that abstract a H atom from CH₃OCl. The rapid dissociation of the C·H₂OCl results in formation of a strong carbonyl π bond and cleavage of the weaker O–Cl bond. C·H₂OCl is *not* sufficiently stable to undergo further reactions with O₂ before dissociation. Other similar methyl radical species such as hydroperoxides (C·H₂OOH) and hypobromates (C·H₂OBr) will likely behave similarly.

Accuracy of our CBS-Q//MP2/6-31G(d,p) calculation and the working reaction method is supported by the very close agreement between our ΔH°_{f298} value of 32.39 ± 2.21 kcal/mol with that reported by Espinosa-Garcia,¹⁰ 32.0 ± 3.5 , using G2 combined with Truhlar's basis set limit method.

Acknowledgment. We thank Chad Sheng (NJIT) for use of his SMCPS (Statistical Mechanics for Heat Capacity and Entropy) computer code to calculate S_{298}° and $C_p(T)$ terms plus ZPVE and thermal energy from Gaussian data files. We thank the reviewers for helpful suggestions. We acknowledge funding from the U.S. EPA under the Airborne Organics and the North East Hazardous Substance Research Centers.

Supporting Information Available: Tables of energies, enthalpies of formation, vibrational frequencies, Fourier coefficients, and thermodynamic data. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

- (1) Solomon, S. Nature 1990, 347, 347.
- (2) Shanahan, T. I.; Hande, M.; Fitzpatrick, S. Int. J. Chem Kinet. 1993, 25, 273.
 - (3) Francisco, J. S. Int. J. Quantum Chem. 1999, 73, 29.
 - (4) Espinosa-Garcia, J. Chem. Phys. Lett. 1999, 315, 239.
 - (5) Li, Y.; Francisco, J. S. J. Chem. Phys. 1999, 111, 8384.
 - (6) Messer, B. M.; Elrod, M. J. Chem. Phys. Lett. 1999, 301, 10.
 - (7) Grela, M. A.; Colussi, A. J. J. Phys. Chem. 1996, 100, 10150.
 - (8) Carl, S. A.; Roehl, C. M.; Mueller, R.; Moortgat, G. K.; Crowley,
- J. N. J. Phys. Chem. 1996, 100, 17191.
 - (9) Jung, D.; Chen, C.; Bozzelli, J. W. J. Phys. Chem. **2000**, 104, 9581.
 - (10) J. Espinosa-Garcia, *Chem. Phys. Lett.* **2000**, *316*, 563.
 - (11) Wang, B.; Hou, H.; Gu, Y. J. Phys. Chem. **1999**, 103, 2060.

(12) (a) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, R. J.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; HeadGordon, M.; Gonzalez, C.; Pople, J. A. *Gaussian94*; Gaussian, Inc.: Pittsburgh, 1995. (b) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Morokuma, Q. Cui, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Golzlez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. *Gaussian98*; Gaussian, Inc.: Pittsburgh, PA, 1998.

(13) Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.

(14) Kohn, W.; Becke, A. D.; Parr, R. G. J. Phys. Chem. 1996, 100, 12974.

(15) Durant, J. L. Chem. Phys. Lett. 1996, 256, 595.

(16) Head-Gordon, M.; Head-Gordon, T. Chem. Phys. Lett. 1994, 220, 122.

(17) Andino, J. M.; Smith, J. N.; Flagan, R. C.; Goddard, W. A.; Seinfield, J. H. J. Phys. Chem. **1996**, 100, 10967.

(18) Mayer, P. M.; Parkinson, O. J.; Smith, D. M.; Radom, L. J. Chem. Phys. **1998**, 108, 604.

(19) Ochterski, J. W.; Petersson, G. A.; Montgomery, J. A. J. Chem. Phys. 1996, 104, 2598.

(20) Petersson, G. A.; Al-Laham, M. A. J. Chem. Phys. 1991, 94, 6081.
 (21) Montgomery, J. A.; Ochterski, J. W.; G. A. Petersson, J. Chem.

Phys. **1994**, *101*, 5900.

(23) Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502.

(24) Hehre, W.; Radom, L.; Schleyer, P. R.; Pople, J. A. Ab Initio

Molecular Orbital Theory; John Wiley & Sons: New York, 1986. (25) Chase, M. W. NIST-JANAF Themochemical Tables, 4th ed.; J. Phys. Chem. Ref. Data, 1998, Monograph 9.

(26) Kabo, M. G. J.; Marsh, K. N.; Roganov, G. N.; Wilhoit, R. C. *Thermodynamics of Organic Compounds in the Gas State*; Thermodynamic Research Center, Texas A&M University System: College Station, TX, 1994; Vol. 1.

(27) Stull, D. R.; E. F. J. Westrum, G. C. Sinke, *The Chemical Thermodynamics of Organic Compounds*; Robert E. Krieger Publishing, Malabar, FL, 1987.

(28) Prosen, E. J.; Rossini, F. D. J. Res. Natl. Bur. Stand. 1945, 263.

(29) Fletcher, R. A.; Pilcher, G. *Trans. Faraday Soc.* **1971**, *67*, 3191.

(30) Green, J. H. S. Chem. Ind. (London) **1960**, 121.

(31) Tsang, W.; Martinho Simoes, J. A.; Greenberg, A.; Liebman, J. F. *Heats of Formation of Organic Free Radicals by Kinetic Methods in Energetics of Organic Free Radicals*; Blackie Academic and Professional: London, 1996.

(32) Seetula, J. A. J. Chem. Soc., Faraday Trans. 1996, 92, 3069.

(33) Traeger, J. C.; Holmes, J. L. J. Phys. Chem. 1993, 97, 3453.

(34) Dobe, S.; Berces, T.; Turanyi, T.; Marta, F.; Grussdorf, J.; Temps, F.; Wagner, H. Gg. J. Phys. Chem. **1996**, 100, 19864.

(35) Ruscic, B.; Berkowitz, J. J. Phys. Chem. 1993, 97, 11451.
(36) Johnson, Russell, D., III.; Hudgens, Jeffrey, W. J. Phys. Chem.

1996, 100, 19874.

(37) Lay, H. T.; Bozzelli, J. W. J. Phys. Chem. 1997, 101, 9505.